From bedside to bench drug-induced tubulointerstitial disease cyclosporine nephropathy study from models of cultured renal epithelial cells.

نویسنده

  • Mai-Szu Wu
چکیده

Cyclosporine (CsA) is a potent immunosuppressant used in the prevention of transplanted organ rejection. CsA is associated with sodium retention, hypertension, hyperkalemia, interstitial fibrosis, and progressive renal failure in transplant recipients. The cellular mechanisms, responding to these complications, were revealed in recent studies. CsA decreased the expression iNOS and production of the nitric oxide (NO) in mouse medullary thick ascending limbs (mTAL) cells. The alteration might subsequently affect the renal medullary hemodynamics and play a role in development of CsA nephrotoxicity. CsA decreased basolateral Na+-K+ ATPase and increased apical Na+-K+-C1(-) co-transport activity. The effects might subsequently account for the CsA-associated sodium retention, and decreased NO production. Decreased NA+-K+ ATPase activity and enhanced Na+-K+-C1(-) co-transport activity were the presentations of renal cell de-differentiation and proliferation. CsA increased mTAL cell proliferation by 2-fold and suggested the proliferation effect of CsA on renal epithelial cells. Activation of the renin-angiotensin system (RAS) is associated with renal fibrosis and progression of the renal failure. CsA enhanced intrarenal RAS activity mainly through the activation of the AT1 receptor by increasing the receptor numbers. The results suggest the role of the AT1 receptor antagonist in treating CsA nephrotoxicity. CsA also decreased the inflammation related intrarenal prostglandin production via COX-2 production. Taken together, CsA altered cell proliferation, ionic transport, NO production, RAS and prostaglandins production in renal epithelial cells. The alterations were correlative and interactive to each other. The comprehension of the effect of CsA in renal epithelial cells gives us more insight in understanding drug-induced renal tubulointerstitial disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4

Objective(s):MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles in kidney development, homeostasis and disease, and participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD). In the present study, we elucidated the role of microR...

متن کامل

Histological changes of kidney in diabetic nephropathy

  Diabetes mellitus is the most common cause of chronic renal disorders and end-stage kidney disease in developed countries. It is the major cause of dialysis and transplantation. Failure in renal function causes wide disorders in the body. Diabetes results in wide range of alterations in the renal tissue. It is believed that early histological changes in diabetic nephropathy are detectabl...

متن کامل

MiR‐30c protects diabetic nephropathy by suppressing epithelial‐to‐mesenchymal transition in db/db mice

Epithelial-to-mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR-30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the rol...

متن کامل

Kidney injury molecule-1 expression in IgA nephropathy and its correlation with hypoxia and tubulointerstitial inflammation.

Tubulointerstitial injury plays an important role in the development and progression of chronic kidney disease (CKD). Kidney injury molecule (KIM)-1 is induced in damaged proximal tubules in both acute renal injury and CKD. However, the dynamics of KIM-1 in CKD and effects of KIM-1 expression on disease progression are unknown. Here, we aimed to determine the associations between tubular KIM-1 ...

متن کامل

Hyperglycemia and hyperlipidemia act synergistically to induce renal disease in LDL receptor-deficient BALB mice.

Diabetic nephropathy is the leading cause of end-stage renal disease in Western countries, but only a portion of diabetic patients develop diabetic nephropathy. Dyslipidemia represents an important aspect of the metabolic imbalance in diabetic patients. In this study, we addressed the impact of combined hyperlipidemia and hyperglycemia on renal pathology. Kidneys from wild-type (WT) or LDL rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chang Gung medical journal

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2007